Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2.

نویسندگان

  • Baohong Zhao
  • Takenobu Katagiri
  • Hiromitsu Toyoda
  • Takatora Takada
  • Takako Yanai
  • Toru Fukuda
  • Ung-il Chung
  • Tatsuya Koike
  • Kunio Takaoka
  • Ryutaro Kamijo
چکیده

Although bone morphogenetic proteins (BMPs) are clinically useful for bone regeneration, large amounts are required to induce new bone formation in monkeys and humans. We found recently that heparin stimulates BMP activity in vitro (Takada, T., Katagiri, T., Ifuku, M., Morimura, N., Kobayashi, M., Hasegawa, K., Ogamo, A., and Kamijo, R. (2003) J. Biol. Chem. 278, 43229-43235). In the present study, we examined whether heparin enhances bone formation induced by BMPs in vivo and attempted to determine the molecular mechanism by which heparin stimulates BMP activity using C2C12 myoblasts. Heparin enhanced BMP-2-induced gene expression and Smad1/5/8 phosphorylation at 24 h and thereafter, although not within 12 h. Heparitinase treatment did not affect the response of cells to BMP-2. In the presence of heparin, degradation of BMP-2 was blocked, and the half-life of BMP-2 in the culture medium was prolonged by nearly 20-fold. Although noggin mRNA was induced by BMP-2 within 1 h regardless of the presence of heparin, noggin failed to inhibit BMP-2 activity in the presence of heparin. Furthermore, simultaneous administration of BMP-2 and heparin in vivo dose-dependently induced larger amounts of mineralized bone tissue compared with BMP-2 alone. These findings clearly indicate that heparin enhances BMP-induced osteoblast differentiation not only in vitro but also in vivo. This study indicates that heparin enhances BMP-induced osteoblast differentiation in vitro and in vivo by protecting BMPs from degradation and inhibition by BMP antagonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomodification of PCL Scaffolds with Matrigel, HA, and SR1 Enhances De Novo Ectopic Bone Marrow Formation Induced by rhBMP-2

The de novo formation of ectopic bone marrow was induced using 1.2-mm-thin polycaprolactone (PCL) scaffolds biomodified with several different biomaterials. In vivo investigations of de novo bone and bone marrow formation indicated that subcutaneous implantation of PCL scaffolds coated with recombinant human bone morphogenetic protein-2 (rhBMP-2) plus Matrigel, hydroxyapatite (HA), or StemRegen...

متن کامل

The dose of growth factors influences the synergistic effect of vascular endothelial growth factor on bone morphogenetic protein 4-induced ectopic bone formation.

Although vascular endothelial growth factor (VEGF) has been shown to act synergistically with bone morphogenetic protein (BMP)2 and BMP4 to promote ectopic endochondral bone formation via cell-based BMP gene therapy, the optimal ratio of VEGF to either of the BMPs required to obtain this beneficial effect remains unclear. In the current study, two cell types (C2C12, NIH/3T3) were retrovirally t...

متن کامل

Enhancing Ectopic Bone Formation in Canine Masseter Muscle by Loading Mesenchymal Stem Cells onto Natural Bovine Bone Minerals.

Objectives- To assess the ectopic bone formation in canine masseter muscle following the implantation of the natural bovine bone minerals (NBM) loaded with canine mesenchymal stem cells (MSCs).Design- Experimental study.Animals- four mongrel dogs.Procedures- Tripotent MSCs isolated from the canine bone marrow were loaded onto the NBM sponges and allowed to adhere. The cell-loaded scaffolds were...

متن کامل

ANA deficiency enhances bone morphogenetic protein-induced ectopic bone formation via transcriptional events.

Ectopic bone formation after joint replacement or brain injury in humans is a serious complication that causes immobility of joints and severe pain. However, mechanisms underlying such ectopic bone formation are not fully understood. Bone morphogenetic protein (BMPs) are defined as inducers of ectopic bone formation, and they are regulated by several types of inhibitors. ANA is an antiprolifera...

متن کامل

Dexamethasone Enhances Osteogenic Differentiation of Bone Marrow- and Muscle-Derived Stromal Cells and Augments Ectopic Bone Formation Induced by Bone Morphogenetic Protein-2

UNLABELLED We evaluated whether dexamethasone augments the osteogenic capability of bone marrow-derived stromal cells (BMSCs) and muscle tissue-derived stromal cells (MuSCs), both of which are thought to contribute to ectopic bone formation induced by bone morphogenetic protein-2 (BMP-2), and determined the underlying mechanisms. Rat BMSCs and MuSCs were cultured in growth media with or without...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 32  شماره 

صفحات  -

تاریخ انتشار 2006